\qquad

Add and Subtract Fractions

Essential Question How can you add and subtract fractions with like

Unlock the Problem
Julie is making a poster for a book report. The directions say to use $\frac{1}{5}$ of the poster to describe the setting, $\frac{2}{5}$ of the poster to describe the characters, and the rest of the poster to describe the plot. What part of the poster will she use to describe the plot?

1 Example use a model.

Shade \qquad to represent the part for the setting.

Shade \qquad to represent the part for the characters.

1				
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

- Write an equation for the part of the poster used for the setting and characters. \qquad
- What does the part of the model that is not shaded represent?
\qquad
- Write an equation for the part of the poster she will use for the plot.

1. What's the Error? Luke says $\frac{1}{5}+\frac{2}{5}=\frac{3}{10}$. Describe his error.

Look for Structure Why should Julie divide her poster into 5 equal parts instead of 3 equal parts?

Common Denominators Fractions with common denominators represent wholes divided into the same number of equal-size parts. To add or subtract fractions with the same denominator, you can add or subtract the number of parts given in the numerators.

(1) Example complete each equation.

Words	Fractions
1 fourth-size part + 2 fourth-size parts = ___ fourth-size parts	$\frac{1}{4}+\frac{2}{4}=\frac{}{4}$
3 sixth-size parts +2 sixth-size parts $=$	$\frac{3}{6}+\frac{2}{6}=$
7 tenth-size parts -4 tenth-size parts $=$	- - $=$

Share and Show
 MATH

1. 9 twelfth-size parts -5 twelfth-size parts $=$ \qquad

Reason Abstractly Explain why $\frac{11}{12}-\frac{5}{6} \neq \frac{6}{6}$.
$\frac{9}{12}-\frac{5}{12}=$ \qquad
Find the sum or difference.
2. $\frac{3}{12}+\frac{8}{12}=$ \qquad 3. $\frac{1}{3}+\frac{1}{3}=$ \qquad 4. $\frac{3}{4}-\frac{1}{4}=$
\qquad
5. $\frac{2}{6}+\frac{2}{6}=$ \qquad 6. $\frac{3}{8}+\frac{1}{8}=$ \qquad 7. $\frac{6}{10}-\frac{2}{10}=$ \qquad

On Your Own

Find the sum or difference.
8. $\frac{1}{2}+\frac{1}{2}=$ \qquad 9. $\frac{5}{6}-\frac{4}{6}=$ \qquad 10. $\frac{4}{5}-\frac{2}{5}=$
\qquad
Practice: Copy and Solve Find the sum or difference.
11. $\frac{1}{4}+\frac{1}{4}=$ \qquad 12. $\frac{9}{10}-\frac{5}{10}=$ \qquad 13. $\frac{1}{12}+\frac{7}{12}=$
\qquad
14. GODEEPER Christopher mixes $\frac{3}{8}$ gallon of red paint with $\frac{5}{8}$ gallon of blue paint to make purple paint. He uses $\frac{2}{8}$ gallon of the purple paint. How much purple paint is left?
\qquad
\qquad

Problem Solving • Applications (world

15.

Matinamical
A city worker is painting a stripe down the center of Main Street. Main Street is $\frac{8}{10}$ mile long. The worker painted $\frac{4}{10}$ mile of the street. Explain how to find what part of a mile is left to paint.
\qquad
\qquad
\qquad
16. THINK SMARTER Sense or Nonsense? Brian says that when you add or subtract fractions with the same denominator, you can add or subtract the numerators and keep the same denominator. Is Brian correct? Explain.

\qquad
\qquad
\qquad
\qquad
\qquad
17. GODEEPER The length of a rope was $\frac{6}{8}$ yard. Jeff cut the rope into 3 pieces. Each piece is a different length measured in eighths of a yard. What is the length of each piece of rope?
18. THINKSMARIER For 18a-18d, choose Yes or No to show if the sum or difference is correct.
18a. $\frac{3}{5}+\frac{1}{5}=\frac{4}{5}$
O Yes
O No
18b. $\frac{1}{4}+\frac{2}{4}=\frac{3}{8}$
\bigcirc Yes
○ No
18c. $\frac{5}{8}-\frac{4}{8}=\frac{1}{8}$
\bigcirc Yes
○ No
18d. $\frac{4}{9}-\frac{2}{9}=\frac{6}{9}$
\bigcirc Yes
○ No

Sense or Nonsense?

19. Harry says that $\frac{1}{4}+\frac{1}{8}=\frac{2}{8}$. Jane says $\frac{1}{4}+\frac{1}{8}=\frac{3}{8}$. Whose answer makes sense? Whose answer is nonsense? Explain your reasoning. Draw a model to help.

-0	Harry
	$\frac{1}{4}+\frac{1}{8}=\frac{2}{8}$

-0	Jane
	$\frac{1}{4}+\frac{1}{8}=\frac{3}{8}$

Model

Harry

Jane

Add and Subtract Fractions

Find the sum or difference.

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

1. $\frac{4}{12}+\frac{8}{12}=\underline{\frac{12}{12}}$

2. $\frac{3}{6}-\frac{1}{6}=$

1					
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$\frac{2}{6}$					

4. $\frac{6}{10}+\frac{3}{10}=$

Problem Solving

5. $1-\frac{3}{8}=$ \qquad 6. $\frac{1}{4}+\frac{2}{4}=$ \qquad

Use the table for 7 and 8.

7. Guy finds how far his house is from several locations and makes the table shown. How much farther away from Guy's house is the library than the cafe?
8. If Guy walks from his house to school and back, how far does he walk?

Distance from Guy's House	
Location	Distance (in miles)
Library	$\frac{9}{10}$
School	$\frac{5}{10}$
Store	$\frac{7}{10}$
Cafe	$\frac{4}{10}$
Yogurt Shop	$\frac{6}{10}$

9. WRITE Math Compare how you would model and record finding the sum and difference of two rocks weighing $\frac{2}{8}$ pound and $\frac{3}{8}$ pound.

Lesson Check (4.N.B.3.3)

1. Mr. Angulo buys $\frac{5}{8}$ pound of red grapes and $\frac{3}{8}$ pound of green grapes. How many pounds of grapes did Mr. Angulo buy?
2. What equation does the model below represent?

1							
$\frac{1}{8}$	8						
$\frac{1}{8}$							

3. There are 6 muffins in a package.

How many packages will be needed to feed 48 people if each person has 2 muffins?
5. A machine makes 18 parts each hour. If the machine operates 24 hours a day, how many parts can it make in one day?
4. Camp Oaks gets 32 boxes of orange juice and 56 boxes of apple juice. Each shelf in the cupboard can hold 8 boxes of juice. What is the least number of shelves needed for all the juice boxes?
6. What equation does the model below represent?

