
PROBLEM SOLVING Lesson 7.10

Problem Solving • Multistep Fraction Problems

Essential Question How can you use the strategy *act it out* to solve multistep problems with fractions?

MP1, MP7

Unlock the Problem (wor

Read the Problem

What do I need to find?

I need to find how many

_____ bags of walnuts Ann needs to make 1-pound bags of walnuts, without leftovers.

What information do I need to use?

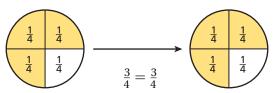
The bags she will buy contain

_____ pound of walnuts. She will repackage the walnuts into

____ -pound bags.

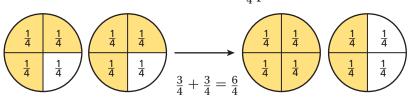
How will I use the information?

I can use fraction circles to


__ the problem.

Solve the Problem

Describe how to act it out. Use fraction circles.


One $\frac{3}{4}$ -pound bag

Not enough for a 1-pound bag

Two $\frac{3}{4}$ -pound bags

One 1-pound bag with $\frac{2}{4}$ pound left over

Three $\frac{3}{4}$ -pound bags have $\frac{3}{4} + \frac{3}{4} + \frac{3}{4} = \frac{}{}$ pounds of

walnuts. This makes _____ 1-pound bags with _____ pound left over.

Four $\frac{3}{4}$ -pound bags have $\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} = \frac{}{}$ -pounds of walnuts.

This makes _____ 1-pound bags with _____ left over.

So, Ann could buy $\frac{3}{4}$ -pound bags of walnuts.

Try Another Problem

At the end of dinner, a restaurant had several dishes of quiche, each with 2 sixth-size pieces of quiche. The chef was able to combine these pieces to make 2 whole quiches, with no leftovers. How many dishes did the chef combine?

Read the Problem	Solve the Problem
What do I need to find?	Describe how to act it out.
What information do I need to use?	
How will I use the information?	

So, the chef combined _____ dishes each with $\frac{2}{6}$ quiche.

Name

Share and Show

1. Last week, Sia ran $1\frac{1}{4}$ miles each day for 5 days and then took 2 days off. Did she run at least 6 miles last week?

First, model the problem. Describe your model.

Then, regroup the parts in the model to find the number of whole miles Sia ran.

Sia ran _____ whole miles and ____ mile.

Finally, compare the total number of miles she ran to 6 miles.

 $6\frac{1}{4}$ miles (6 miles

So, Sia _____ run at least 6 miles last week.

- \checkmark 2. What if Sia ran only $\frac{3}{4}$ mile each day. Would she have run at least 6 miles last week? Explain.
- \checkmark 3. A quarter is $\frac{1}{4}$ dollar. Noah has 20 quarters. How much money does he have? Explain.

THINK SMARTER How many $\frac{2}{5}$ parts are in 2 wholes?

Unlock the Problem

- Underline the question.
- Circle the important facts.
- ✓ Cross out unneeded information.

WRITE Math **Show Your Work**

On Your Own

5. A company shipped 15,325 boxes of apples and 12,980 boxes of oranges. How many more boxes of apples than oranges did the company ship?

- 6. MATHEMATICAL 1 Analyze A fair sold a total of 3,300 tickets on Friday and Saturday. It sold 100 more on Friday than on Saturday. How many tickets did the fair sell on Friday?
- 7. THINKSMARTER Emma walked $\frac{1}{4}$ mile on Monday, $\frac{2}{4}$ mile on Tuesday, and $\frac{3}{4}$ mile on Wednesday. If the pattern continues, how many miles will she walk on Friday? Explain how you found the number of miles.

- **8.** Godern Jared painted a mug $\frac{5}{12}$ red and $\frac{4}{12}$ blue. What part of the mug is **not** red or blue?
- **9.** THINK SMARTER Choose the number that correctly completes the sentence.

Each day, Mrs. Hewes knits $\frac{1}{3}$ of a scarf in the morning and $\frac{1}{3}$ of a scarf in the afternoon.

It will take Mrs. Hewes

2

3

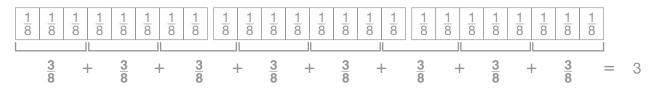
days to knit 2 scarves.

4

Name _____

Practice and Homework Lesson 7.10

Problem Solving • Multistep Fraction Problems



COMMON CORE STANDARD—4.NF.B.3dBuild fractions from unit fractions by applying

and extending previous understandings of operations on whole numbers.

Read each problem and solve.

1. Each child in the Smith family was given an orange cut into 8 equal sections. Each child ate $\frac{5}{8}$ of the orange. After combining the leftover sections, Mrs. Smith noted that there were exactly 3 full oranges left. How many children are in the Smith family?

There are 8 addends, so there are 8 children in the Smith family.

8 children

- 2. Val walks $2\frac{3}{5}$ miles each day. Bill runs 10 miles once every 4 days. In 4 days, who covers the greater distance?
- 3. Chad buys peanuts in 2-pound bags. He repackages them into bags that hold $\frac{5}{6}$ pound of peanuts. How many 2-pound bags of peanuts should Chad buy so that he can fill the $\frac{5}{6}$ -pound bags without having any peanuts left over?
- **4. WRITE** Math Write a word problem that involves adding or subtracting two fractions. Draw a model and describe how you would act out the problem to solve it.

Lesson Check (4.NF.B.3d)

- **1.** Karyn cuts a length of ribbon into 4 equal pieces, each $1\frac{1}{4}$ feet long. How long was the ribbon?
- 2. Several friends each had ²/₅ of a bag of peanuts left over from the baseball game. They realized that they could have bought 2 fewer bags of peanuts between them. How many friends went to the game?

Spiral Review (4.0A.C.5, 4.NF.A.1, 4.NF.B.3c, 4.NF.B.3d)

- 3. A frog made three jumps. The first was $12\frac{5}{6}$ inches. The second jump was $8\frac{3}{6}$ inches. The third jump was $15\frac{1}{6}$ inches. What was the total distance the frog jumped?
- **4.** LaDanian wants to write the fraction $\frac{4}{6}$ as a sum of unit fractions. What expression should he write?

- **5.** Greta made a design with squares. She colored 8 out of the 12 squares blue. What fraction of the squares did she color blue?
- 6. The teacher gave this pattern to the class: the first term is 5 and the rule is *add* 4, *subtract* 1. Each student says one number. The first student says 5. Victor is tenth in line. What number should Victor say?

