Common Denominators

Unlock the Problem

Martin has two rectangles that are the same size. One rectangle is cut into $\frac{1}{2}$-size parts. The other rectangle is cut into $\frac{1}{3}$-size parts. He wants to cut the rectangles so they have the same size parts. How can he cut each rectangle?

A common denominator is a common multiple of the denominators of two or more fractions. Fractions with common denominators represent wholes cut into the
 same number of parts.

(1) Activity use paper folding and shading.

Materials $\quad 2$ sheets of paper
Find a common denominator for $\frac{1}{2}$ and $\frac{1}{3}$.

STEP 1

Model the rectangle cut into $\frac{1}{2}$-size parts. Fold one sheet of paper in half. Draw a line on the fold.

STEP 2

Model the rectangle cut into $\frac{1}{3}$-size parts. Fold the other sheet of paper into thirds. Draw lines on the folds.

STEP 3

Fold each sheet of paper so that both sheets have the same number of parts. Draw lines on the folds. How many equal
parts does each sheet of paper have? \qquad

Use Models How did the models help you find the common denominator for $\frac{1}{2}$ and $\frac{1}{3}$?

STEP 4

Draw a picture of your sheets of paper to
show how many parts each rectangle could have.

So, each rectangle could be cut into \qquad parts.

Example write $\frac{4}{5}$ and $\frac{1}{2}$ as a pair of fractions with common denominators.

You can use common multiples to find a common denominator. List multiples of each denominator. A common multiple can be used as a common denominator.

STEP 1 List multiples of 5 and 2.
Circle common multiples.

5: 5 ,

2 : \qquad , \qquad , \qquad , \qquad , \qquad , \qquad

STEP 2 Write equivalent fractions.
$\frac{4}{5}=\frac{4 x}{5 x}=\frac{}{10}$
$\frac{1}{2}=\frac{1 x}{2 x}=\frac{}{10}$
Choose a denominator that is a common multiple of 5 and 2 .

You can write $\frac{4}{5}$ and $\frac{1}{2}$ as \qquad and \qquad -

1. Are $\frac{4}{5}$ and $\frac{1}{2}$ equivalent? Explain.
\qquad
\qquad fraction.

ERROR Alert

Remember that when you multiply the denominator by a factor, you must multiply the numerator by the same factor to write an equivalent
2. Describe another way you could tell whether $\frac{4}{5}$ and $\frac{1}{2}$ are equivalent.
\qquad
\qquad
\qquad

Shape and Show

MATH
 BOARD

1. Find a common denominator for $\frac{1}{3}$ and $\frac{1}{12}$ by dividing each whole into the same number of equal parts.
Use the models to help.
common denominator: \qquad

$\frac{1}{3}$

$\frac{1}{12}$

Name
Write the pair of fractions as a pair of fractions with a common denominator.
2. $\frac{1}{2}$ and $\frac{1}{4}$
3. $\frac{3}{4}$ and $\frac{5}{8}$
4. $\frac{1}{3}$ and $\frac{1}{4}$
5. $\frac{4}{12}$ and $\frac{5}{8}$

On Your Own

Explain how using a model or listing multiples helps you find a common denominator.

Write the pair of fractions as a pair of fractions with a common denominator.
6. $\frac{1}{4}$ and $\frac{5}{6}$

Tell whether the fractions are equivalent. Write $=$ or \neq.
8.

9. $\frac{3}{4} \bigcirc \frac{6}{8}$
10. $\frac{1}{2} \bigcirc \frac{4}{8}$
11. $\frac{6}{8} \bigcirc \frac{4}{8}$
12. GODEEPER Jerry has two same-size circles divided into the same number of equal parts. One circle has $\frac{3}{4}$ of the parts shaded, and the other has $\frac{2}{3}$ of the parts shaded. His sister says the least number of pieces each circle could be divided into is 7 . Is his sister correct? Explain.

Problem Solving • Applications (acald

13. GODEEPER Carrie has a red streamer that is $\frac{3}{4}$ yard long and a blue streamer that is $\frac{5}{6}$ yard long. She says the streamers are the same length. Does this make sense? Explain.
\qquad
\qquad
\qquad
\qquad
14. THINK SMARIER Leah has two same-size rectangles divided into the same number of equal parts. One rectangle has $\frac{1}{3}$ of the parts shaded, and the other has $\frac{2}{5}$ of the parts shaded. What is the least number of parts into which both rectangles could be divided?
\qquad
15.

Maritnacical (6) Julian says a common denominator for $\frac{3}{4}$ and $\frac{2}{5}$ is 9 . What is Julian's error? Explain.

Personal Math Trainer

16. THINK SMARTER ${ }^{\text {B }}$ Miguel has two same-size rectangles divided into the same number of equal parts. One rectangle has $\frac{3}{4}$ of the parts shaded, and the other has $\frac{5}{8}$ of the parts shaded.

Into how many parts could each rectangle be divided? Show your work by sketching the rectangles.

Common Denominators

COMMON CORE STANDARD—4.NF.A. 1
Extend understanding of fraction equivalence and ordering.
Write the pair of fractions as a pair of fractions with a common denominator.

1. $\frac{2}{3}$ and $\frac{3}{4}$
2. $\frac{1}{4}$ and $\frac{2}{3}$
3. $\frac{3}{10}$ and $\frac{1}{2}$

Think: Find a common multiple.
3: 3, 6, 9, 12, 15
4: 4, 8, 12, 16, 20
$\frac{8}{12}, \frac{9}{12}$
4. $\frac{3}{5}$ and $\frac{3}{4}$
5. $\frac{2}{4}$ and $\frac{7}{8}$
6. $\frac{2}{3}$ and $\frac{5}{12}$
7. $\frac{1}{4}$ and $\frac{1}{6}$

Tell whether the fractions are equivalent. Write $=$ or \neq.
8. $\frac{1}{2} \bigcirc \frac{2}{5}$
9. $\frac{1}{2} \bigcirc \frac{3}{6}$
10. $\frac{3}{4} \bigcirc \frac{5}{6}$
11. $\frac{6}{10} \bigcirc \frac{3}{5}$

Problem Solving (red world

12. Adam drew two same size rectangles and divided them into the same number of equal parts. He shaded $\frac{1}{3}$ of one rectangle and $\frac{1}{4}$ of the other rectangle. What is the least number of parts into which both rectangles could be divided?
13. Mera painted equal sections of her bedroom wall to make a pattern. She painted $\frac{2}{5}$ of the wall white and $\frac{1}{2}$ of the wall lavender. Write an equivalent fraction for each fraction using a common denominator.

Lesson Check (4.Nf.A.1)

1. Write a common denominator for $\frac{1}{4}$ and $\frac{5}{6}$.

Spiral Review (4.nBT.A.2, 4.nBT.B.5, 4.NBT.B.6, 4.NF.A.1)

3. What number is 100,000 more than seven hundred two thousand, eighty-three?
4. On a bulletin board, the principal, Ms. Gomez, put 115 photos of the fourthgrade students in her school. She put the photos in 5 equal rows. How many photos did she put in each row?
5. Aiden baked 8 dozen muffins. How many total muffins did he bake?
6. Judy uses 12 tiles to make a mosaic. Eight of the tiles are blue. What fraction, in simplest form, represents the tiles that are blue?
