\qquad

Equivalent Fractions

Essential Question How can you use models to show equivalent fractions?

Investigate

Materials $■$ color pencils

Joe cut a pan of lasagna into third-size pieces. He kept $\frac{1}{3}$ and gave the rest away. Joe will not eat his part all at once. How can he cut his part into smaller, equal-size pieces?
A. Draw on the model to show how Joe could cut his part of the lasagna into 2 equal pieces.

You can rename these 2 equal pieces as a fraction of the original pan of lasagna.

Suppose Joe had cut the original pan of lasagna into equal pieces of this size.

How many pieces would there be? \qquad
What fraction of the pan is 1 piece? \qquad
What fraction of the pan is 2 pieces? \qquad

You can rename $\frac{1}{3}$ as \qquad .
B. Now draw on the model to show how Joe could cut his part of the lasagna into 4 equal pieces.

You can rename these 4 equal pieces as a fraction of the original pan of lasagna.

Suppose Joe had cut the original pan of
 lasagna into equal pieces of this size.

How many pieces would there be? \qquad
What fraction of the pan is 1 piece? \qquad
What fraction of the pan is 4 pieces? \qquad
You can rename $\frac{1}{3}$ as \qquad .
C. Fractions that name the same amount are equivalent fractions. Write the equivalent fractions.

$$
\frac{1}{3}=\square=\square
$$

Draw Conclusions

1. Compare the models for $\frac{1}{3}$ and $\frac{2}{6}$. How does the number of parts relate to the sizes of the parts?
\qquad
\qquad
2. Describe how the numerators are related and how the denominators are related in $\frac{1}{3}=\frac{2}{6}$.
\qquad
\qquad
\qquad
3. THINK SMARIER Does $\frac{1}{3}=\frac{3}{9}$? Explain.

Make Connections

Savannah has $\frac{2}{4}$ yard of ribbon, and Isabel has $\frac{3}{8}$ yard of ribbon.
How can you determine whether Savannah and Isabel have the same length of ribbon?

The equal sign ($=$) and not equal to sign (\neq) show whether fractions are equivalent.

Tell whether $\frac{2}{4}$ and $\frac{3}{8}$ are equivalent. Write $=$ or \neq.
STEP 1 Shade the amount of ribbon Savannah has.

STEP 2 Shade the amount of ribbon Isabel has.

Think: $\frac{2}{4}$ yard is not the same amount as $\frac{3}{8}$ yard.

So, $\frac{2}{4} \bigcirc \frac{3}{8}$.

Use Models How could you use a model to show that $\frac{4}{8}=\frac{1}{2}$?

Name \qquad

Share and Show

MATH bOARD

Use the model to write an equivalent fraction.

1.

$\frac{1}{5}$
2.

$\frac{2}{3}$

\qquad

Tell whether the fractions are equivalent. Write $=$ or \neq.
3. $\frac{1}{6} \bigcirc \frac{2}{12}$
4. $\frac{2}{5} \bigcirc \frac{6}{10}$
5. $\frac{4}{12} \bigcirc \frac{1}{3}$
6. $\frac{5}{8} \bigcirc \frac{2}{4}$
7. $\frac{5}{6} \bigcirc \frac{10}{12}$
8. $\frac{1}{2} \bigcirc \frac{5}{10}$

Problem Solving • Applications

9. GODEEPER Manny used 8 tenth-size parts to model $\frac{8}{10}$. Ana used fewer parts to model an equivalent fraction. How does the size of a part in Ana's model compare to the size of a tenth-size part? What size part did Ana use?
\qquad
\qquad
\qquad
\qquad
10. Martinaical (5) Use a Concrete Model How many eighth-size parts do you need to model $\frac{3}{4}$? Explain.
\qquad
\qquad
\qquad
\qquad

What's the Error?

11. \qquad Ben brought two pizzas to a party. He says that since $\frac{1}{4}$ of each pizza is left, the same amount of each pizza is left. What is his error?

Describe Ben's error.
\qquad

Draw models of 2 pizzas with a different number of equal pieces. Use shading to show $\frac{1}{4}$ of each pizza.
12. THNK SMARTER For numbers 12a-12d, tell whether the fractions are equivalent by selecting the correct symbol.
12a. $\frac{3}{15} \begin{aligned} & = \\ & \neq\end{aligned}$
12b.
$\frac{3}{4}$
$=$
\neq
$\frac{16}{20}$
12c.
$\frac{2}{3}$

$\frac{8}{12}$
12d.

$\frac{4}{5}$

Equivalent Fractions

Use the model to write an equivalent fraction.

1.

$\frac{4}{6}$
2.

$\frac{3}{4}$

Tell whether the fractions are equivalent. Write $=$ or \neq.
3. $\frac{8}{10} \bigcirc \frac{4}{5}$
4. $\frac{1}{2} \bigcirc \frac{7}{12}$
5. $\frac{3}{4} \bigcirc \frac{8}{12}$
6. $\frac{2}{3} \bigcirc \frac{4}{6}$

Problem Solving

7. Jamal finished $\frac{5}{6}$ of his homework. Margaret finished $\frac{3}{4}$ of her homework, and Steve finished $\frac{10}{12}$ of his homework. Which two students finished the same amount of homework?
8. WRITE Math Draw a model to show a fraction that is equivalent to $\frac{1}{3}$ and a fraction that is not equivalent to $\frac{1}{3}$.
9. Sophia's vegetable garden is divided into 12 equal sections. She plants carrots in 8 of the sections. Write two fractions that are equivalent to the part of Sophia's garden that is planted with carrots.

Lesson Check (4.Ne.A.1)

1. A rectangle is divided into 8 equal parts. Two parts are shaded. What fraction is equivalent to the shaded area of the rectangle?
2. Jeff uses 3 fifth-size strips to model $\frac{3}{5}$. He wants to use tenth-size strips to model an equivalent fraction. How many tenth-size strips will he need?

Spiral Review (4.OA.A.3, 4.OA.B.4, 4.NBT.B.5, 4.NBT.B.6)

3. Cassidy places 40 stamps on each of 8 album pages. How many stamps does she place?
4. Maria and 3 friends have 1,200 soccer cards. If they share the soccer cards equally, how many will each person receive?
5. Four students each made a list of prime numbers.

Eric: 5, 7, 17, 23
Maya: 3, 5, 13, 17
Bella: 2, 3, 17, 19
Jordan: 7, 11, 13, 21
Who made an error and included a composite number? Write the composite number from his or her list.

