Equivalent Fractions

Essential Question How can you use models to show equivalent fractions?

MATHEMATICAL PRACTICES

Investigate

Materials color pencils

Joe cut a pan of lasagna into third-size pieces. He kept $\frac{1}{3}$ and gave the rest away. Joe will not eat his part all at once. How can he cut his part into smaller, equal-size pieces?

A. Draw on the model to show how Joe could cut his part of the lasagna into 2 equal pieces.

You can rename these 2 equal pieces as a fraction of the original pan of lasagna.

Suppose Joe had cut the original pan of lasagna into equal pieces of this size.

How many pieces would there be? _____

What fraction of the pan is 1 piece?_____

What fraction of the pan is 2 pieces? _____

You can rename $\frac{1}{3}$ as _____.

You can rename these 4 equal pieces as a fraction of the original pan of lasagna.

Suppose Joe had cut the original pan of lasagna into equal pieces of this size.

How many pieces would there be? _____

What fraction of the pan is 1 piece?

What fraction of the pan is 4 pieces? _____

You can rename $\frac{1}{3}$ as _____.

Draw Conclusions

- **1.** Compare the models for $\frac{1}{3}$ and $\frac{2}{6}$. How does the number of parts relate to the sizes of the parts?
- **2.** Describe how the numerators are related and how the denominators are related in $\frac{1}{3} = \frac{2}{6}$.

3. THINKSMARTER Does $\frac{1}{3} = \frac{3}{9}$? Explain.

Make Connections

Savannah has $\frac{2}{4}$ yard of ribbon, and Isabel has $\frac{3}{8}$ yard of ribbon. How can you determine whether Savannah and Isabel have the same length of ribbon?

The equal sign (=) and not equal to sign (\neq) show whether fractions are equivalent.

Tell whether $\frac{2}{4}$ and $\frac{3}{8}$ are equivalent. Write = or \neq .

STEP 1 Shade the amount of ribbon Savannah has.

STEP 2 Shade the amount of ribbon Isabel has.

Think: $\frac{2}{4}$ yard is not the same amount as $\frac{3}{8}$ yard.

MATHEMATICAL PRACTICES 4

Use Models How could you use a model to show that $\frac{4}{8} = \frac{1}{2}$?

Share and Show

Use the model to write an equivalent fraction.

 $\frac{1}{5}$

Ø 2.

Tell whether the fractions are equivalent. Write = or \neq .

3.
$$\frac{1}{6}$$
 $\frac{2}{12}$

4.
$$\frac{2}{5}$$
 $\frac{6}{10}$

5.
$$\frac{4}{12}$$
 $\frac{1}{3}$

6.
$$\frac{5}{8}$$
 $\frac{2}{4}$

7.
$$\frac{5}{6}$$
 $\frac{10}{12}$

8.
$$\frac{1}{2}$$
 $\frac{5}{10}$

Problem Solving • Applications

9. GODEEPER Manny used 8 tenth-size parts to $\overline{\text{model } \frac{8}{10}}$. Ana used fewer parts to model an equivalent fraction. How does the size of a part in Ana's model compare to the size of a tenth-size part? What size part did Ana use?

10. MATHEMATICAL 5 Use a Concrete Model How many eighth-size parts do you need to model $\frac{3}{4}$? Explain.

What's the Error?

11. Ben brought two pizzas to a party. He says that since $\frac{1}{4}$ of each pizza is left, the same amount of each pizza is left. What is his error?

Describe Ben's error.

Draw models of 2 pizzas with a different number of equal pieces. Use shading to show $\frac{1}{4}$ of each pizza.

 $\frac{1}{6}$

12. For numbers 12a–12d, tell whether the fractions are equivalent by selecting the correct symbol.

12a.
$$\frac{3}{15} = \frac{1}{4}$$

12b.
$$\frac{3}{4}$$
 $=$ $\frac{16}{20}$

12c.
$$\frac{2}{3}$$
 $=$ $\frac{8}{12}$

12d.
$$\frac{8}{10}$$
 $\stackrel{=}{\neq}$ $\frac{4}{5}$

Equivalent Fractions

COMMON CORE STANDARD—4.NF.A.1 Extend understanding of fraction equivalence and ordering.

Use the model to write an equivalent fraction.

1.

 $\frac{4}{6}$

$$\frac{2}{3}$$

2.

Tell whether the fractions are equivalent. Write = or \neq .

- 3. $\frac{8}{10}$ $\frac{4}{5}$
- **4.** $\frac{1}{2}$ $\frac{7}{12}$
- 5. $\frac{3}{4}$ $\frac{8}{12}$
- 6. $\frac{2}{3}$ $\frac{4}{6}$

Problem Solving Regulation

- **7.** Jamal finished $\frac{5}{6}$ of his homework. Margaret finished $\frac{3}{4}$ of her homework, and Steve finished $\frac{10}{12}$ of his homework. Which two students finished the same amount of homework?
- **8.** Sophia's vegetable garden is divided into 12 equal sections. She plants carrots in 8 of the sections. Write two fractions that are equivalent to the part of Sophia's garden that is planted with carrots.
- **9. WRITE** Math Draw a model to show a fraction that is equivalent to $\frac{1}{3}$ and a fraction that is not equivalent to $\frac{1}{3}$.

Lesson Check (4.NF.A.1)

- 1. A rectangle is divided into 8 equal parts. Two parts are shaded. What fraction is equivalent to the shaded area of the rectangle?
- 2. Jeff uses 3 fifth-size strips to model $\frac{3}{5}$. He wants to use tenth-size strips to model an equivalent fraction. How many tenth-size strips will he need?

Spiral Review (4.0A.A.3, 4.0A.B.4, 4.NBT.B.5, 4.NBT.B.6)

- **3.** Cassidy places 40 stamps on each of 8 album pages. How many stamps does she place?
- **4.** Maria and 3 friends have 1,200 soccer cards. If they share the soccer cards equally, how many will each person receive?

- 5. Six groups of students sell 162 balloons at the school carnival. There are 3 students in each group. If each student sells the same number of balloons, how many balloons does each student sell?
- **6.** Four students each made a list of prime numbers.

Eric: 5, 7, 17, 23

Maya: 3, 5, 13, 17

Bella: 2, 3, 17, 19

Jordan: 7, 11, 13, 21

Who made an error and included a composite number? Write the composite number from his or her list.

